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Angular spectrum of diffracted wave fields with
apochromatic correction
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We report on compensation of diffraction-induced angular dispersion of ultrashort pulses up to a second or-
der. A strategy for chromatic correction profits from high dispersion of kinoform-type zone plates. Ultraflat
dispersion curves rely on a saddle point that may be tuned at a prescribed wavelength. Validity of our ap-
proach may reach the few-cycles regime. © 2008 Optical Society of America
OCIS codes: 050.1970, 320.0320, 220.4830.
Diffraction gratings are optical elements with the
ability of separate time spectral components of broad-
band radiation, thus widely used in wavelength-
demultiplexing and spectroscopy. The physical
mechanism of this phenomenon relies on the space-
time coupling involving diffraction. In particular, ex-
citation of a given spatial frequency causes the onset
of a tilted plane wave in which the propagation direc-
tion is chromatically dispersed [1,2]. In the angular-
spectrum representation, diffraction leads to variant
spectra at different temporal frequencies.
Diffraction-induced angular dispersion (DIAD) re-
sults in a major inconvenience in many other appli-
cations. For instance, a diffractive optical element
(DOE) designed to tailor the shape of a monochro-
matic field would bring about substantial deviations
of the prescribed waveform if it is applied over ultra-
broadband laser beams [3].

Some proposals are found in the literature concern-
ing compensation of DIAD employing highly disper-
sive prisms and gratings [4,5]. In particular,
kinoform-type zone plates (ZPs) are energetically ef-
ficient solutions leading to chromatic dispersion iso-
tropically around the optic axis. Previously, we devel-
oped ZP-based compensating achromatic setups
demonstrating modest behavior in ultrabroadband
regimes [6,7]. In this Letter we propose a novel ar-
rangement consisting of an appropriate combination
of ZP doublets capable of transforming a diffracted
wave field to exhibit zero DIAD of its angular-
spectrum components at a given wavelength, provid-
ing an apochromatic response.

The chromatic operation of a ZP doublet is as fol-
lows. The pair of ZPs, namely ZP1 and ZP2 in Fig. 1,
are separated a distance d�0. If the focal distance of
ZPn is Zn �n= �1,2�� for a wavelength �0, it changes
following an inverse law upon the wavelength as fn
=Zn�0 /�. ZPs of the kinoform type are convenient to
attain the highest efficiency at a broad spectrum;
moreover, in this Letter we neglect spurious light
originated from different orders of diffraction. Illumi-
nated by a point source (PS), the DOE is conveniently
placed at a1 in front of ZP1. We point out that axial
distances are oriented; specifically a1�0 in Fig. 1,
but a negative value would be considered if the DOE

is virtually imaged at the rear of ZP1 by means of a
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relay lens system (RLS) as given ahead. After dif-
fracted light traverses ZP1, a magnified replica of the
DOE transmittance is observed at a1� from the lens,
evaluated from the lens formula a1

−1+a1�
−1= f 1

−1,
where the lateral magnification is M1=−a1� /a1. In
this Letter lens aperturing is omitted. This image
wave impinges over ZP2 after propagating a distance
a2=−a1�+d. In the image space, a new replica may be
found at a distance a2� from ZP2, again computed by
the lens formula a2

−1+a2�
−1= f 2

−1 and now affected by a
lateral magnification M=M1M2 being M2=−a2� /a2. In
principle, a controllable dependence of M upon the
wavelength may be achieved as a result of the disper-
sive character of fn. Finally, if a plane wavefront of
the output diffracted field results in convenience, the
lens formula,

1

R + a1
+

1

d − f2
=

1

f1
, �1�

provides the required radius of curvature R of the in-
cident wavefront illuminating the DOE.

For simplicity, let us first assume the DOE has a
phase-only transmittance exp�ikqr� exciting a single
transverse frequency k0q0=kq (subindex 0 points at
�0). In the ZP-doublet image plane, the magnified
wave field �exp�ikqr /M� holds a spatial frequency
kq /M. This field represents a tilted plane wave,
where angular deviation � with respect to the z axis
is evaluated from the equation q /M=sin �, with q be-
Fig. 1. (Color online) Schematic of dispersive ZP doublet.
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ing the modulus of q. In the paraxial regime sin �
�� leading to an output of cubic angular deviation

� = �1

�

�0
+ �2� �

�0
�2

+ �3� �

�0
�3

, �2�

where �1=q0, ��2 ,�3�= �� ,���1, and

� = −
a1�Z1 + Z2�

Z1Z2
−

d

Z2
, �3a�

� =
a1d

Z1Z2
. �3b�

In the short-wavelength regime ���0, ZPs become
zero-power �fn

−1→0� lenses, and, as expected, angular
deviation is dominated by the term �1�0. However,
strong deviations from this linear dependence upon
wavelength may be found in the vicinity of �0. In par-
ticular �0=�1�1+�+�� may be negative, where an in-
version about the z axis would be considered. We
point out that ZP singlets may be investigated at d
=0, for which � vanishes; in this case �3=0 and, con-
sequently, angular deviation is represented by a pa-
rabola [6].

Dispersion curves may be tailored by modifying
geometric parameters of the optical system: DOE po-
sition �a1�, coupling distance �d�, and ZPs focal dis-
tances �Zn�. In the vicinity of �0, normal DIAD is ob-
served if �̇0�0 and anomalous DIAD is observed if
�̇0	0, where the single dot represents a first deriva-
tive ��. When �̇0=0, leading to

1 + 2� + 3� = 0, �4�

�0 represents a stationary point; thus, dispersion
curves provide an achromatic response around �0. In
Fig. 2 we show some dispersion curves for different
values of the parameters � and � satisfying Eq. (4).
We point out that these sorts of solutions are inde-
pendent upon q so that the achromatic condition is
satisfied simultaneously for every component of the
angular spectrum. Finally, for a diffractive singlet

Fig. 2. (Color online) Dispersion curves (insets) with a sta-
tionary point (A, B, and C in black) and an inflection point

(A, D, and E in gray) at �0.
�d=0� of optical power Z−1=Z1
−1+Z2

−1 (at �0) we en-
counter the solution a1=Z /2 given elsewhere [6,7].

In the anomalous regime, the curve changes from
being concave downward having a maximum to con-
cave upward containing a minimum (see curve D in
Fig. 2). Therefore, a couple of wavelengths �− �	�0�
and �+ ���0� are found satisfying ���±�=�0. This apo-
chromatic behavior allows ultraflattened dispersion
curves in broadbands around �0; the lower ��̇0� the
flatter the curve. Furthermore, � has an inflection
point between �±, which may coincide at �0 if �̈0=0,
giving

� + 3� = 0. �5�

Dispersion curves corresponding to solutions of Eq.
(5) are shown in Fig. 2. If additionally �̇0→0, giving
�=−1 and �=1/3 from Eqs. (4) and (5), a saddle point
is found at �0 (see curve A in Fig. 2); hereupon, this
solution is analyzed in detail.

First we encounter �0=�1 /3 so that apochromatic-
ity of the output wave field is accompanied with a de-
crease of spatial frequencies. From Eqs. (3a) and (3b)
we infer that ZPs and DOE may be positioned follow-
ing

� a1

Z1
�

±

=

1 ±	−
4

3�Z1

Z2
+

1

4�
2�Z1

Z2
+ 1� , �6�

d

Z2
=

1

3� a1

Z1
�−1

. �7�

As a consequence, axial distances a1 and d depend
exclusively on focal distances Zn. Equations (6) and
(7) are plotted in Fig. 3. Real values are found if
Z1 /Z2
−1/4, yielding air-spaced convergent–
divergent pairs. In this case, axial distances a1 and d
have opposite signs. Since d is necessarily positive,
we find that a1	0; as a consequence, an RLS should
be inserted between the diffractive element and ZP1
to create a virtual DOE behind.

Of particular interest is the case of Z1=−Z2, where
�a1 /Z1�−→1/3 and d=Z2; considering �a1 /Z1�+ leads
trivially to the attachment of the ZPs �d=0� and,

Fig. 3. (Color online) Plot of �a1 /Z1�+ (left) and �a1 /Z1�−
(right) given in Eq. (6) for different values of Zn. Also �d /Z2�

of Eq. (7) is shown in the plots.
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therefore, is rejected. Its relevance is better under-
stood by analyzing the parameter

a2�

Z2
=

�0�� − 2�0�

�2 − 3��0 + 3�0
2 . �8�

The DOE is imaged at a distance a2�=−Z2 (at �0) from
ZP2 in such a way that ȧ2� vanishes at �0. As a conse-
quence, longitudinal chromatic aberration is compen-
sated. We point out that a virtual image is formed
since a2�	0 for a broadband around �0; however, an
RLS may be placed behind to collect the wave field in
a given (real) plane. Finally, ä2�=2Z2/�0

2�0 at �0; in
fact, this is an invariant for every apochromatic solu-
tion of Eqs. (6) and (7) and not only when Z1=−Z2.
We may conclude that a residual longitudinal chro-
matic aberration associated with the location of the
imaged pattern remains unavoidable.

The proposed apochromatic arrangement is de-
picted in Fig. 4. A plane-wave source of time spec-
trum S is at the input plane. Following [7] we benefit
from RLSs each made of two nondispersive refractive
lenses of focal distance f and separated 2f. They dem-
onstrate three-dimensional shift-invariant imaging
[8] with unit magnification and off-axis inversion.
The RLS entrance plane is at f in front of the first
lens, and the exit plane is at f behind the second lens.
First, a so-called illuminating system is designed to
transform the incident plane wavefront into the nec-
essary spherical wavefront at the DOE plane. It con-
sists of an RLS (with subindex 1 in Fig. 4) and a pair
of ZPs of focal lengths ±Z2; the divergent ZP is lo-
cated at d from RLS1 entrance plane, and the conver-
gent ZP is placed at its exit plane. At −a1=Z2 /3 be-
yond, where the DOE would be placed, the wavefront
yields a radius of curvature

R

Z2
=

�2 − 3��0 + 3�0
2

3�2 , �9�

as also required from Eq. (1).
Subsequent to suited illumination, the wave field

diffracted by the DOE is chromatically corrected by
means of a new ZP doublet. Before, RLS2 virtually
projects the diffracted wave field behind ZP1 (of focal

Fig. 4. (Color online) Schematic of arrangement.
distance −Z2) at −a1. After traversing the compensat-
ing ZP doublet, the corrected pattern is imaged at a
plane coinciding with the ZP1 plane; thus, an ulti-
mate unitary projection may be required. In this
case, RLS3 generates a tuned pulsed field at its exit
plane (also output plane in Fig. 4). Importantly, the
RLSm entrance plane �m= �2,3�� matches at the
RLSm−1 exit plane.

In general DOE transmittance T�r� may be repre-
sented as 
A�q�exp�ikqr�d2q, where A stands for the
angular spectrum of the diffracted field under homo-
geneous illumination. Assuming hard-edge diffrac-
tion and, in general, any sort of wave modulation re-
maining T invariant upon k, A magnifies in direct
proportion to k−1. In the framework of the Fresnel–
Kirchhoff diffraction formulation, the wave field at z
from the output plane of coupled illumination-
compensation systems yields an angular-spectrum
representation

��r,z� =� Ã�q�exp�ikqr�exp�ikmz�d2q, �10�

where m=1−q2 /2. Output angular spectrum

Ã�q� = − SM2A�Mq�exp�ik�Z2 + a2��q2/2
, �11�

also modified by a quadratic phase term, manifests a
magnification proportional to �Mk�−1. Apochromatic
correction guarantees that �� and ��

2 of Mk vanishes
at �0. Unfortunately ä2��0 induces group-velocity
dispersion (GVD) and, therefore, pulse stretching of
transform-limited inputs S. In fact, GVD is also in-
duced by material dispersion of lenses and ZPs.

In conclusion, we propose a novel arrangement ex-
ploiting ZP doublets, leading to angular dispersion of
diffracted wave fields with apochromatic behavior.
Our analysis may be of relevance in the generation of
controlled broadband pulses and DOE-based ul-
trafast beam shaping [7].
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